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Functions Decreasing in Transposition with Applications to
Shock, Damage, and Down Tir.ie ... . 

M. Hollander
5
, F. Pros chan , and J. Sethur amant

Florida State University, Tallahassee, Florida, USA

In this paper a large class of multivariate densities and frequen

functions , including the multivariate Poisson distribution and the com-

pound multivariate Poisson distribution , are shown to have the decreasing

in transposition property introduced by Hollander , Proachan , and Sethuraman

(1977 , kin. Statist. ~~, 722—733) . Applications relevant to reliability

are given , including applications to shock models ,cuinulation of damage ,

and component down times .

1. INTRODUCTION !ND PRELIMINAR IES

In this paper we derive a basic theorer.i (Section 2, Theorem 2.1) show-

ing that a large class o~ r~it~~ariate probability densities and frequency

functions possess the decreasing in transposition (DT) property (Defini—

tian 1.3) introduced by Hol.lazider, Prosehan, and Sethureman [3] (iiPs(3]).

Of particular interest are the multiva.riate Poisson distribution and the

compound multivariate Poisson distribution treated in Section 3. Then,

in Section ~~, we consIder applications arising in reliability. These ap-

plications pertain to shock models, cummu.lation of damage , and component

down times . In the remainder of this section we give some preliminaries ,

including definitions and theorems, whi ch will be useful in the sequel.

A)E 1970 subject classifications: Primary 62E99 , 62H99; Secondary 62N05
Key words and phrases: Functions decreasing in transposition, multivariate

. distributions, reliability, shock models.
Research supported by the Air Force Office of Scientific Research, AFSC ,

USA~ under Grant No. 78-3678
tBesearch supported by the United States Army Research Office, Durham,
under Grant No. DAA29-76-G-0238.
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HPS(3] define a. partial ordering on n-dimensions.]. Euclidean space

(Rn) presented in Definition 1.2 below.

DEFINITION 1.1. A vector x = (x1, ..., x1~) is said to be a simple

transposition of a vector x’ if x and x’ agree in all but two coordinates,

say I and j, I j ,  x• < x , x ’ = x , and x’ = x ; we write x x’.
1 i i  j  j  I — —

Thus x ’ is obtained from x by performing an inversion of a single

pair of coordinates that occur in their natural order in x.

DEFINITION 1.2. Let x and x ’ be two n-dimensional vectors such that

there exists a finite number of vectors x° , ~~ • ~k In R~ satisfying

A 
~ 

~ = x’; i.e., x’ is obtained from x by a finite

number of simple transpositions. We say that x ’ is a transposition of x.

lIPS [3] then define a class of functions as follows: -

DEFINITION 1.3. Let A = (A,, ... , An
) ,  where A1 ~ A2 .~~ ... ~~

are n ordered values in R1. We say that f(A, x) is decreasing in trans-

position (DT) if:

(a) f(A~, x
1t
) = f(! A) for each permutation ii = (~r1, ... , irs) of the

indices 1, 2, ... , n, where A lt — (A
lt , ... , A~ ) and
1 n

X — CX , ... , x~ ).
1

(b) ~~ A’ implies that f(A , A) � f(A , A ’) .

I
-1
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The familiar concepts of majorization and Schur tunctions will be

used In this paper, and for completeness we recall their definitions.

DEFINITION i.Z~. Let x111 � ... � x
1~ 1 

be a decreasing rearrangement

of the coordinates of the vector A• Let A and ~ satisfy :

� ~~Y [1), j  = 1, ... , n - 2.

n n
~ 

X~~~ = 
~

1=1 1=1

Then x is said to majorize (we write ~~~

DEFINITION 1.5. A function f from R~ into R
1 is said to be Schur-

convex (Schur—concave) if x~~ ~ implIes f(x) �

HPS[3) derive basic properties of DT functions and show their rela-

tionship to other classes of functions. They show (HPS[3], Lemma

2.2) that when f(A , x) is of the form g(A — x),  f(A , A) is a DT function

if and only if g(y) is a Schur—concave function. They also show (HPS[3],

Theorem 3.2) that the DT property is preserved under positive mixtures

and (HPS[3], Theorem 3.6) that the DT property is preserved under products

of positive DT functions. They also prove a “composition” theorem for

DT functions (HPS[3], Theorem 3.3) and a “preservation” theorem ( HPS(3],

Theorem 3.7) for Schur—concave functIons under an integral, transform

where the kernel is DT.
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By restrict ing g2(~~, z) in the BPS “composition” theorem to be of

the form g(~~ — z ) ,  where g(v) is Schur-concave , we have the following.

THEOREM 1.5. Let g1(x , ~) be a DT function and g(w) be a Sehur-

concave function such that

= J s1(~ ~)g(z~._~) d~z(~ )

is well-defined, where ~ is a positive permutation invariant measure.

Then f(x , z) is aD T function.

Theore m 1.5 generalizes the following result of Marshall and 01km

((5), Theorem 2.1).

THEOREM 1.6. (Marshall-OlkIn, (5)). Let g1(x) and g2(x) be Schur-

concave functions such that

f(x) fg1(x —

is well—defined , where p is as in Theore m 1.5. Then f( .~.) is a Schur—concave

function.

2, DT PROPERTY OF OVERLAPPING SUMS

In this section we state and prove our main theorem . Let, for

k = 2 , 3, . . . , n ,

= (A: A is a subset of size k from (1 , ..., n il.  (2.1)
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THEOREM 2.1. Let = (~~~, . . . ,  x ) ,  (X A , A 
~ 

A~}, k = 2 , ... ,

be independent collections of random variables . Let X have a DT density

fun ction . Let the random variables in {X A , A ~ be i. i.d .  and have

a co~~~n log— ..oncave density function g~, k 2, . .. ,  n . Let , for

i — 1 , •. • ,

Z~, — X~ + . (2.2)
k2 A: AEA~ and i~ A

Then Z (Z1, ..., z~) .as a liT density function .

REMARK 2.2. Note that the s1jm’n~nds appearing in the Z1, ... , Z~ overlap

considerably . For example , X12 appears in the expressions for end Z2,

~5.23 appears in the express ions for Z1, Z2, and Z3, etc. Thus the inheri-

tance of the DT prop ert y of from that of X is complica ted by the over—

Lapping of the X’ .

To prove the main result, we shall find it helpful to have available

the following lemma:

LENt.~A 2.3 Let k � 2. Let {X A , ~ A,~} be i . i .d.  , sndom variables

with a common log-concave density function g (with respect to the counting

meaau~e on a lattice or -
. - - ::~ . ‘u re). Let

V~ , i. = 1, .. .,  n . (2.3)
A: AEA.

~ 
and leA

Let t(w2. , ... , v~) be the density function of W =(- - . .. ., v )  Then f

is a Schur—concave function .
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Proof . We will now give a proof for the case where g and f are den—

sity functions with respect to counting measures . The proof for the case

where g and f are density functions with respect to Lebesgue measure s is

similar and will be omitte d.

Notice first that W1, .. ., W~ are exchangeable and hence f(v1, ..., w~)

i~ permutation invariant . Fix w , ... , w~ and define

= {W1 = w1 W2 = w2, W 3 = ~~~~~~~ W
fl 

= w } .

To show that f is Schur-concave, we must show that

P(A
~~~~

) � P (A~ j ,~~ ) (2. 1t)

whenever

(vi, W2 ) ~ (w~~ v~) ,

i.e.  whenever
(2 . 5 )

where

* * * *w1 w +~~,w~~~ w -a~~v~~~ w +B , w~~~ w —
~~~~~
.

The following classes of subsets of (1, ..., n) ,  will help us to

divide the elements of A into those that contain both 1 and 2, and those

that do not contain either 1 or 2, end those that contain exactly one of

1 and 2. Define

V = {v: v is a subset of size (k — 2) from (3 , . . . ,  nil,

U — fu: u is a subset of size (k — 1) from (3, ...,
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and

S = (a: a is a subset of size k from (3, ..., n ) ) .

Any A in Ak is of the form 12v, 2.u, 2u, or s. Fix numbers 
~~~~ 

v C. V , X
5
,

a e S and x , u € U and define the e rent B as foll ows:

B = {X.1~~ = x~~~, v € V , X5 x5 , a e. 5, + = 2x~, u e U) .  (2 .6 )

Let

2Yu = X iu
_ X

2u~~
U E U

~

Then the density function of 
~~u’ 

u € U) conditional on B is

flf(x
~ 

+ y
~
)f(x

~ 
-

(2.7)
~ fl[f(x + y )f(x — y )]

y , u€U u U U U U

U

end the conditional probability of A given B is
~~ 
,w
2

+ y
~
)f(x

~ 
-

.
~
yu=u

!11f(x~ 
+ i~ )f( - 

~~~
Yu,u 

-J

= if wj ~x1~~ + ~~~ 
+ ~x2 , j  = 3, ..., 11

v: jev u : jeu s: j es
and w ~x1~~ +

V U

O otherwise.

Now, for each x~, f(x~ + y~
)f(x

~ 
- is symmetric and log-concave in

The numerator in the expression for P(AV ~ 
IB) is therefore a convolution

1’2
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of syninetric log—concave densities and hence, from Theorem 1 of Karlin arid

i~roschen [~ 4 ] ,  is syi~~etric and 1og—con c~ve in a. Thus if (2.5) is satisfied,

• we obtain
P(A ~B) ~ P(A , ,IB).

• 
wl,w2 vl,w2

Inequality (2.14) now follows by unconditioning, and thus we have esta-

blished that f Is schur—concave.

We now give the proof of the main theorem.

Proof of Theorem 2.1. Let

~~ = , i = 1, ... n , k = 2 , ...,
A: AcAk and I€A

Let x ) (41~ , ~~~~~~~~~~~~~ ..., n,e n dX = ( X 1, ... , x~). Then

z~~ x + + ... +

From Lemma 2.3, the density fun ctions of ~~ 
2) 

~~~~~~~ x~ 
n) are all Schur—

coneè.ve. Since the density function of Z is the convolution of a DT

density and several Schur—concave densities, it follows from Theorems

1.6 and 1.7 that the density function of Z is DT. I J

3. APPLICATIONS TO MLJLTIVARIATE POISSON DISTRIBUTIONS

In this section we present several applications of Theorem 2.1.

3.1. MULTIVABISATE POISSON . The multivariate Poisson distribution

(cf.Teicher (5), Dwass and Teicher [1)) can be defined as follows. Let

be a Poisson random variable with mean m1, I 1, ..., n , X~ be a

Poisson random variable with mean mA , A eAk , k = 2 , ... , n , where Ak 
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given by (2.1). All the Poisson random variables are assumed mutually

independent. Then (Z1, ... , Z), as defined by (2.2), is said to have

a joint multivariate Poisson distribution .

Now we ~‘pecialize further to the case where

m A zn~ , AeAk , k = 2 , ..., n .  (3.1)

That is , all X ’ s with the same number (> 1) of subscripts, have a common

mean. Then, from Theorem 2.1, we conclude that the corresponding frequency

function is decreasing in transposition . That is, let rn = ~~~ ... , m~)

and let f(rn, z) denote the joint probability mass function of Z1, ~~~~~~~~ 
Z
n

(where the other means are held fixed as in (3.1)). Then when m~ S ... S m ,

and z z’, we have f(rn, z) � f(rn, z’) .

3.2. COMPOUND MtJLTIVARIATE POISSON. The compound multivariate

Poisson distribution described below generalizesthe compound bivariate

Poisson distribution considered by Holgate [2] in the context of certain

ecological situations. Let Z1, Z2, Z
n 
denote the number of ind.tvidua].s of

type 1, 2 , ..., n, respectively, in a quadrat of land. We suppose that these

individuals arise from independent clusters and assume that the nunber of clus-

ters N is a Poisson random variable with parameter A. In cluster j, there are

~ ,

k 2  A : A€A,~ and lEA

individuals of type I, I = 1, . . . ,  n ,
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where X.~, X~, A a I: = 2 , ..., n, are independent Poisson random vari-

ables with parameters m., mA ,  k 2 , ..., n, respect ively , ‘nd satisfying

mA 
= m,~ for A E A~ , k = 2, ..., n ,for each cluster j. We have already

stated that the clusters are assumed to be independent. Thus

= (Z~~, ..., Z’~ ) has a multivariate Poisson distribution. The vector

Z of the number of individuals of the diff erent types in the quadrat is

given by

= z ~+ ...

and is said to have a compound multivariate Poisson distribution~ tie ~ic~w show that

the density of Z is DT. Conditional on N = N0, Z is the sum of N0 i.i.d.

multivariate Poisson vectors and therefore is multivariate Poisson from

the infinite divisibility of the multivariate Poisson established by. Dwass

and Teicher [1). Thus the conditional density of Z, given N = N0, is

DT. By unconditioning , the density of Z is also DT. This proof also

shows that the random number of clusters N , could be any random variable

taking values on the positive integers.

14, APPLICATIONS TO RELIABILITY PROBLEMS

In this section we show sample applications of Theorem 2.1 in some

commonly occurring reliability models.

14.i. N1.ThffiER OF SHOCKS EXPERIENCED BY CO~~ONENTS OF SYSTEM. Consi-

der a system of n components experiencing successive shocks of various

types over time, each shock affecting one or more components. More sped —



r —= 
~~~~~~~~~~~~~~~~~~~~~~

• —
~~~~~~~~~~ 

•
~ 
— ---

~
- 

~~~~ 
•
~~

ilip

— 11 —

fically , in a fixed interval of time, let X
1 be the number of shocks af-

fecting component i alone (I = 1, 2, ... , n), the number of shocks

affecting components i and j simultaneously and no other Components

(1 � i < j � n), ... , X12 ~ 
the number of shocks affecting all n com-

ponents simultaneously . Let (z1, ..., z~) be defined as in (2.2). Then

Z. denotes the total number of shocks experienced by component

i, I = 1, ..., n. Assume that (x1, ... , x) , {XA , A a A.~}. k = 2, ..., ii

satisfy the conditions of Theorem 2.1. Then we conclude that the joint

frequency function of (z1, ... , Z ) is DT.

14.2. CUMULATION OF DAMAGE. We consider a model similar to that of

4.1. However , now we study the damage accumulated by each component as

a result of the shocks simultaneo-isly affecting the various subsets of

components. Let D. be the damage accumulated by component i as a result

of shocks affecting component i alone (I = 1, ..., n), D1~ be the damage

accumulated by component s i and j as a result of shocks affecting compo-

nents i and j simultaneously , but no other components (1 � I < j < n), ...,

and 1)12 . 
be the damage accumulated by each of the components as a re-

sult of shocks affecting all components simultaneously . Assume that the

joint distribution of D = (D1, ..., 1)) has a DT density function , that

A a A
k has a common log concave density function ~k ’ k = 2, ..., n.

Assume further that 1); {DA , A a Ak~’ k = 2, ..., n are mutually dependent. 

-~~~~~~~~~~~~~~--~~~~~~~~--- S- - ” •  ~~~~~~~~~~~~~~ ~~~~~~
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Define:

• T. 1). + 
~ ~~~ , i 1, ..., n.
k2 A: AEAk ,ieA

represent 3 the total damage to component i accruing from all shocks

affecting component i (and possibly affecting other components simultane-

ously), i = 1, ..., n.

From Theorem 2.1 we conclude that the joint probability density of

T , ..., T is DT .1 n

14.3. COMPONENT DOWN TIMES. Suppose that an n—component system is

subject to repair (replacement). If any component fails, the system fails

and the repair (replacement) time for that component is recorded. Like—

wIse , if any subset of components fails simultaneously, the system fails,

and the time it takes to repair (replace) each of the components in that

subset is recorded. For example, the operating record of a two—component

system is exhibited in Fig. 14.1 below.

f— 5 -H F--~~-H I— l0 4

Component 1 i— Repair — Repair Repair I

f-8 —4 f— i— 4 F-— 10 -~~

Component 2 Repair — Repair — Repair I

h- 5 --~~ F— B —1 1— 7 —4 F— 10 —4

System i— Down - Down — Down — Down I
0 — Time -—- t

14.1. Operating Record of a Two-Component System

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Figure 14.1 indicates that a total of 14 repair (replacement ) periods occurred

during (0, t]: 1 period was due to the failure of component 1 alone, 1

period was due to the failure of component 2 alone, and 2 periods were

due to the simultaneous failure of c~mponents 1 and 2.

Let R1 = time devoted to repair of component i due to shocks af-

fecting component i alone (1 � i ~ r), R~ 
= time devoted to repair of each

of components in A due to shocks affecting components in A simultaneously

and no other components, for each A a &~•, k = 2, ..., n. Assume that the

joint distribution of R1, ... , B has a DT density function, that R
~ 

has a

common log concave density function for A a Ak , k = 2, ... , n. Assume

further that R , {R A , A a Ak
}
~ 

k = 2, ..., n are mutually independent . Define

~1 = ~~ + 
~~ 

1R~ , i = 1, ..., n.

k 2  A : AaAk,iEA

S. represents the total time spent repairing (replacing) component i as

a result of shocks affecting component I, i = 1, ... , n.

From Theorem 2.1, we conclude that the joint density function of

S , ..., S is DT.
1 xi

-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .----~~~~~— 5 ±1 : j
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